Open Problem: Online Sabotaged Shortest Path
نویسندگان
چکیده
There has been much work on extending the prediction with expert advice methodology to the case when experts are composed of components and there are combinatorially many such experts. One of the core examples is the Online Shortest Path problem where the components are edges and the experts are paths. In this note we revisit this online routing problem in the case where in each trial some of the edges or components are sabotaged / blocked. In the vanilla expert setting a known method can solve this extension where experts are now awake or asleep in each trial. We ask whether this technology can be upgraded efficiently to the case when at each trial every component can be awake or asleep. It is easy get to get an initial regret bound by using combinatorially many experts. However it is open whether there are efficient algorithms achieving the same regret.
منابع مشابه
Hardness of Online Sleeping Combinatorial Optimization Problems
We show that several online combinatorial optimization problems that admit efficient no-regret algorithms become computationally hard in the sleeping setting where a subset of actions becomes unavailable in each round. Specifically, we show that the sleeping versions of these problems are at least as hard as PAC learning DNF expressions, a long standing open problem. We show hardness for the sl...
متن کاملA New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets
A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...
متن کاملTwo optimal algorithms for finding bi-directional shortest path design problem in a block layout
In this paper, Shortest Path Design Problem (SPDP) in which the path is incident to all cells is considered. The bi-directional path is one of the known types of configuration of networks for Automated Guided Vehi-cles (AGV).To solve this problem, two algorithms are developed. For each algorithm an Integer Linear Pro-gramming (ILP) is determined. The objective functions of both algorithms are t...
متن کاملControl Contraction Metrics on Finsler Manifolds
Control Contraction Metrics (CCMs) provide a nonlinear controller design involving an offline search for a Riemannian metric and an online search for a shortest path between the current and desired trajectories. In this paper, we generalize CCMs to Finsler geometry, allowing the use of nonRiemannian metrics. We provide open loop and sampled data controllers. The sampled data control constructio...
متن کاملApproximation Solutions for Time-Varying Shortest Path Problem
Abstract. Time-varying network optimization problems have tradition-ally been solved by specialized algorithms. These algorithms have NP-complement time complexity. This paper considers the time-varying short-est path problem, in which can be optimally solved in O(T(m + n)) time,where T is a given integer. For this problem with arbitrary waiting times,we propose an approximation algorithm, whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015